Include columns in index
CREATE NONCLUSTERED INDEX NC_EmpDep

 ON Employee(EmployeeID, DepartmentID)
 INCLUDE (Lastname)
INCLUDE should normally have the fields you will need AFTER a record has been found, saving you a round trip back to get more data.

CREATE INDEX <name> ON <table> (KeyColList) INCLUDE (NonKeyColList)
Where:

· KeyColList = Key columns = used for row restriction and processing
WHERE, JOIN, ORDER BY, GROUP BY etc

· NonKeyColList = Non-key columns = used in SELECT and aggregation (e.g. SUM(col)) after selection/restriction
index (#1):

Employee(DepartmentID) INCLUDE (Lastname, EmployeeID)
This index does not help at all if the query changes slightly, such as:

SELECT EmployeeID, DepartmentID, LastName
FROM Employee
WHERE DepartmentID = 5 AND LastName = 'Smith'
This would need the index (#2):

Employee(DepartmentID, LastName) INCLUDE (EmployeeID)
Imagine you had 1,000 employees in Department 5. Using index #1, to find all the Smiths, you'd need to seek through all 1,000 rows in Department 5, as the included columns are not part of the key. Using index #2, you could seek directly to Department 5, LastName Smith.

Index #2 is thus more useful at servicing a wider range of queries - but the cost is a more bloated index key, which will make the non-leaf pages of the index larger with INCLUDE Columns List. Every system will be different, so there's no rule-of-thumb here.
As a side note, it's worth pointing out that if EmployeeID was the clustering key for this table - assuming a clustered index - then you don't need to include EmployeeID - it's present in all non-clustered indexes, meaning index #2 could just be

Employee(DepartmentID, LastName)
http://dba.stackexchange.com/questions/12922/hard-and-fast-rule-for-include-columns-in-index
https://www.youtube.com/watch?v=ik5S0GuJD6E
Index Architecture
[image: image1.png]
[image: image2.png]
[image: image3.png]
https://www.youtube.com/watch?v=p9FlnOPltA8
https://www.youtube.com/watch?v=ITcOiLSfVJQ
[image: image4.png]
[image: image5.png]
Database File Group

[image: image6.png]
How to configure tempdb in SQL Server
Single Data File - Waiting for access
[image: image7.png]
Multiple Data File - More free access

[image: image8.png]
Statistics
[image: image9.png]
[image: image10.png]
Size Tables Columns Index Triggers Proc Functions Views Many More...
GETUTCDATE()
DECLARE @local_time DATETIME;
DECLARE @gmt_time DATETIME;
SET @local_time = GETDATE();
SET @gmt_time = GETUTCDATE();
SELECT 'Server local time: '
 + CONVERT(VARCHAR(40),@local_time);
SELECT 'Server GMT time: '
 + CONVERT(VARCHAR(40),@gmt_time);
SELECT 'Server time zone: '
 + CONVERT(VARCHAR(40),
 DATEDIFF(hour,@gmt_time,@local_time));
GO
Select GETUTCDATE()

give us "Server GMT time"
With (nolock)
 SELECT *

FROM [dbo].[Consultants] with (nolock)

SELECT *

FROM [dbo].[Consultants] with (readpast)

It is recommended to use NOLOCK in joins.

which is a major performance and scalability improvement.

Sql Select Query time will be same for both when sql server is busy/idle

This will help us under Large Database

Exll_TKN_1 Submitted/Status xTab Performance improve with (nolock)
http://www.sqlservercentral.com/Forums/Topic596112-146-1.aspx
