
Analyzing & Optimizing
T-SQL Query Performance

Part1:
using SET and DBCC

Kevin Kline
Senior Product Architect for SQL Server

Quest Software

AGENDA

Audience Poll
Presentation

(submit questions to the e-seminar
moderator for the Q & A session)
Product Review

(a few minutes on Quest products for SQL
Server)
Q & A

(answers to questions submitted to the
moderator)

ANALYZING & OPTIMIZING QUERY
PERFORMANCE WITH SET AND DBCC

This presentation will cover:
– SET STATISTICS IO
– SET STATISTICS TIME
– SET NOCOUNT ON
– DBCC SHOW_STATISTICS
– Index and Table Defragmentation Commands

(DBCC SHOWCONTIG, DBCC INDEXDEFRAG, DBCC
DBREINDEX, DBCC SQLPERF)

– DBCC SQLPERF
– DBCC PROCCACHE (with some discussion of DBCC

MEMUSAGE and DBCC PINTABLE)

T-SQL TUNING
APPROACH

Recognize the possible sources of slow
performance
Acquire general performance
information first, then go after more
granular performance information
Probe for info iteratively
Capture baseline information as well as
troubleshooting information
Test (and retest) your hypothesis

SET STATISTICS IO

Enabled before a query is run
Can be enabled as a query parameter in SQL
Query Analyzer
The important info appears after the result set
of the query is returned:
– How many scans were performed
– How many logical reads (reads in cache) were

performed
– How many physical reads (reads on disk) were

performed
– How many pages were placed in the cache in

anticipation of future reads (read-ahead reads)

Good queries usually have higher logical reads
and few, if any physical reads and scans

EXAMPLE

Query:
USE northwind
GO
SET STATISTICS IO ON
GO
SELECT COUNT(*) FROM employees
GO
SET STATISTICS IO OFF
GO

Results:

2977

Table 'Employees'. Scan count 1, logical reads
53, physical reads 0, read-ahead reads 0.

TIP!

Clear the buffer between iterated tests
using DBCC DROPCLEANBUFFERS

For example:

SET STATISTICS IO ON
GO
SELECT COUNT(*) FROM employees
GO
SET STATISTICS IO OFF
GO
DBCC DROPCLEANBUFFERS
GO

SET STATISTICS TIME

Enabled before a query is run
Can be enabled as a query parameter in
SQL Query Analyzer
Returns the elapsed time of each query
with the query result set
Depends on the total activity of the
server
Gives you a more accurate metric for the
user experience
Helps you measure software performance
in terms of real performance

EXAMPLE #1

Query:
SET STATISTICS TIME ON
GO
SELECT COUNT(*) FROM titleauthors
GO
SET STATISTICS TIME OFF
GO

Results:
SQL Server Execution Times:

cpu time = 0 ms. elapsed time = 8672 ms.
SQL Server Parse and Compile Time:

cpu time = 10 ms.

25

SQL Server Execution Times:
cpu time = 0 ms. elapsed time = 10 ms.

SQL Server Parse and Compile Time:
cpu time = 0 ms.

EXAMPLE #2

Use this script to capture time before and after a single
command that does not contain multiple GO
statements, reporting a total elapsed time in seconds
for the statement

Query:

DECLARE @start_time DATETIME
SELECT @start_time = GETDATE()
< any query or a script that you want to
time, without a GO >

SELECT ‘Elapsed sec’ = DATEDIFF(second,
@start_time, GETDATE())

GO

EXAMPLE #3

Use this script to capture time before and after multiple
commands that contain multiple GO statements,
reporting a total elapsed time in seconds for the
statement

Query:

CREATE TABLE #save_time (start_time DATETIME NOT NULL
)

INSERT #save_time VALUES (GETDATE())
GO

< any script that you want to time (may include GO) >
GO

SELECT ‘Elapsed sec’ = DATEDIFF(second, start_time,
GETDATE())

FROM #save_time
DROP TABLE #save_time
GO

SET NOCOUNT

Returns the single biggest performance
boosts when coding stored procedures,
triggers, and functions. Even casual
scripting can experience a significant
boost!

Turns of the N rows affected verbiage
that appears at the end of every query
and eliminates the DONE_IN_PROC
internal messaging sent from the server
to the client for each step in a stored
procedure.

SET NOCOUNT

Add code to your stored procedures, triggers, and
functions to return exactly the strings you wish the user
to see rather than rely on default SQL Server behavior

Syntax:

CREATE PROC foo
AS
SET NOCOUNT ON

< stored procedure code >

SET NOCOUNT OFF
GO

DBCC AND INDEXES

DBCC offers a variety of
functionalities, some corrective
and some investigative

This section shows several DBCC
commands that can help
investigate the condition and
usefulness of table structures and
indexes

DBCC
SHOW_STATISTICS

DBCC SHOW_STATISTICS offers a very
effective way to analyze an indexes
effectiveness. The syntax is:

DBCC SHOW_STATISTICS (table_name,
index_name)

Refer to the white paper for an example.
(It’s pretty long!)

DBCC
SHOW_STATISTICS

DBCC SHOW_STATISTICS returns:
Updated: The date and time the index
statistics were last updated
Rows: The total number of rows in the table
Rows Sampled: The number of rows sampled
for index statistics information
Steps: The number of distribution steps
Density: The selectivity of the first index
column prefix
Average key length: The average length of the
first index column prefix
All density: The selectivity of a set of index
column prefixes

DBCC
SHOW_STATISTICS

Average length: The average length of
a set of index column prefixes
Columns: The names of index column
prefixes for which All density and
Average length are displayed
RANGE_HI_KEY: The upper bound value
of a histogram step
RANGE_ROWS: The number of rows
from the sample that fall within a
histogram step, not counting the upper
bound

DBCC
SHOW_STATISTICS

EQ_ROWS: The number of rows from the
sample that are equal in value to the upper
bound of the histogram step
DISTINCT_RANGE_ROWS: The number of
distinct values within a histogram step, not
counting the upper bound
AVG_RANGE_ROWS: The average number of
duplicate values within a histogram step, not
counting the upper bound (where
RANGE_ROWS / DISTINCT_RANGE_ROWS for
DISTINCT_RANGE_ROWS > 0)

TIP!

Don’t forget to run UPDATE
STATISTICS on a regular basis!

The system stored procedure,
sp_autostats, can be used to
enable automatic statistic
collection on an individual index,
table, or all the tables in a table.

INDEX and TABLE
FRAGMENTATION

Table fragmentation is similar to hard
disk fragmentation caused by frequent
file creation, deletion and modification.
Database tables and indexes need
occasional defragmentation to stay
efficient.
The most efficient allocation for read-
heavy tables is when all pages occupy a
contiguous area in the database, but
after weeks of use, a table may become
scattered across the disk drive. The
more pieces it is broken into – the less
efficient the table becomes.

INDEX and TABLE
FRAGMENTATION

The most efficient allocation for
write-heavy tables is when all
pages occupy a contiguous area in
the database, but have some
unused space on each page (fill
factor).
The following DBCC commands
help you maintain optimum table
and index performance.

TIP!

Dropping, recreating or reordering
a clustered index recreates all
other indexes on a table

There are new and more efficient
ways to recreate an index in one
step rather than issuing separate
DROP INDEX and CREATE INDEX
statements (shown later)

DBCC SHOWCONTIG

This command shows the degree of contiguous values in
a clustered index. If the metrics are poor, then you can
drop and recreate the clustered index. The syntax of
this DBCC command is:

DBCC SHOWCONTIG [(object identifier [,
index_name |
index_id])]

[WITH { ALL_INDEXES
| FAST [, ALL_INDEXES]
| TABLERESULTS [, ALL_INDEXES]

[, {FAST |
ALL_LEVELS}] }]

DBCC SHOWCONTIG

You may use either table name
and index name, or table ID and
index ID numbers. For example:

USE northwind
GO
DBCC SHOWCONTIG ([Order Details],
OrderID)

GO

DBCC SHOWCONTIG

Results:

DBCC SHOWCONTIG scanning 'Order Details' table...
Table: 'Order Details' (325576198); index ID: 2, database ID:

6
LEAF level scan performed.
- Pages Scanned................................: 5
- Extents Scanned..............................: 2
- Extent Switches..............................: 1
- Avg. Pages per Extent........................: 2.5
- Scan Density [Best Count:Actual Count].......: 50.00% [1:2]
- Logical Scan Fragmentation: 0.00%
- Extent Scan Fragmentation: 50.00%
- Avg. Bytes Free per Page.....................: 2062.0
- Avg. Page Density (full).....................: 74.52%
DBCC execution completed. If DBCC printed error messages,

contact your system administrator.

DBCC INDEXDEFRAG

DBCC INDEXDEFRAG is a great way to
rebuild the leaf level of index in one
step
– Performs on-line index reconstruction
– Can be interrupted without losing the work

already completed
– Fully logged
– Can take longer than rebuilding the index

and is not quite as effective

Syntax:

DBCC INDEXDEFRAG ({ database | 0 } ,{ table | 'view' }
,{ index })
[WITH NO_INFOMSGS]

DBCC DBREINDEX

DBCC DBREINDEX was introduced in version
7.0 to enable DBAs to rebuild indexes without
having to drop and recreate PRIMARY KEY and
UNIQUE constraints
– Locks the table for the duration of the operation
– Can offer additional optimizations than a series of

individual DROP INDEX and CREATE INDEX
statements on a single table

Syntax:

DBCC DBREINDEX
(['database.owner.table_name' [,index_name

[,fillfactor]]]
) [WITH NO_INFOMSGS]

TIP!

SQL Server 2000 now includes a new option
on the CREATE INDEX statement, WITH
DROP_EXISTING. This command offers a lot
of benefits over the older technique of issue
DROP INDEX statements followed by CREATE
INDEX statements.

– If executed on the clustered key, non-clustered
keys are rebuilt

– If the original columns and index names are used,
the operation is sped up by not sorting the data
again

– Can be used to change the key(s) of an index

DBCC SQLPERF

IOSTATS: Reports I/O usage since the server
was started or since these statistics were
cleared. The closer these values are to zero,
the better.
LRUSTATS: Reports cache usage since the

server was started or since these statistics
were cleared. LRU is Least Recently Used.
Cache Hit Ratio is the single most important
performance value in this group and indicates
better results the closer it is to 100. (Similar
to DBCC PROCCACHE)
NETSTATS: Reports network usage.
RASTATS: Reports Read Ahead usage.

DBCC SQLPERF

CLEAR: This option is used in conjunction with
one of the four discussed above. Clears the
specified statistics and restarts generation of
statistics. This option generates no output.
THREADS: Maps the Windows NT system

thread ID to a SQL Server spid. (Similar to
sp_who).
LOGSPACE: Reports the percentage of

transaction log space used. This option can
only be used if transaction log is located on its
own database segment.

DBCC SQLPERF

Syntax:

DBCC SQLPERF (
{IOSTATS [, CLEAR]
| LRUSTATS [, CLEAR]
| NETSTATS [, CLEAR]
| RASTATS [, CLEAR]
| THREADS
| LOGSPACE)

DBCC PROCCACHE

DBCC, using the PROCCACHE option, can also be used
to examine the procedure cache, that is, the space in
memory reserved for caching the execution plans of
stored procedures, triggers, functions, oft-called queries
and so forth. The syntax is:

DBCC PROCCACHE

You cannot directly tune the size of the procedure cache
as you could in earlier versions of SQL Server.
However, you can impact the size by controlling how
much total memory SQL Server gets, and whether SQL
Server must compete for memory with other Windows
Services.

DBCC PROCCACHE

DBCC PROCCACHE returns the following
information:
num proc buffs: The number of stored
procedures that could possibly be in the
procedure cache
num proc buffs used: The number of slots in
the cache holding stored procedures. In this
case, a slot is simply a position in the cache
num proc buffs active: The number of slots in
the cache holding stored procedures that are
executing

DBCC PROCCACHE

proc cache size: The total size of
the procedure cache, in 8k pages
proc cache used: The amount of

the procedure cache holding stored
procedures , in 8k pages
proc cache active: The amount of

the procedure cache holding stored
procedures that are executing , in
8k pages

TIP!

You can flush the procedure cache
without rebooting the server by using
the command DBCC FREEPROCCACHE.
This command wipes clean all elements
from the procedure cache.

Syntax:
DBCC FREEPROCCACHE

Executing this command causes all
compile plans in the procedure cache to
be dropped.

DBCC PINTABLE

Just as you can force clean the procedure cache, you
can also force SQL Server to place data into the data
cache. This can be dangerous since the data is never
unpinned from memory. However, for the well-
considered operation, DBCC PINTABLE can improve
performance.

Syntax:
DBCC PINTABLE(database_id, table_id)

The command does not actually read a table into the
memory cache. Instead, it ensures that pages from the
table are retained in cache once read. (You could
couple this command immediately with a SELECT
statement to read the table directly into memory.)

QUEST SOLUTIONS

Spotlight® - Real-time diagnostic and
resolution
Foglight® - 24x7 unattended monitoring
Knowledge Xpert™ - Online technical
reference for SQL Server 2000
QDesigner™ - Database design and
application tool
Benchmark Factory® - Load testing
solution that scales throughput to virtually
unlimited users

CONCLUSION

Raffle giveaway
– SQL in a Nutshell by Kevin Kline with Daniel

Kline

Survey/Questionnaire
Upcoming e-Seminar
– Analyzing and Optimizing T-SQL Query

Performance on Microsoft SQL Server
Part 2: Indexing Strategies
• September 10, 2002
• 11:00 a.m. - 12:00 p.m. PST

Info@quest.com

QUESTION AND ANSWERS

	Analyzing & Optimizing T-SQL Query Performance Part1: using SET and DBCC
	AGENDA
	ANALYZING & OPTIMIZING QUERY PERFORMANCE WITH SET AND DBCC
	T-SQL TUNING APPROACH
	SET STATISTICS IO
	EXAMPLE
	TIP!
	SET STATISTICS TIME
	EXAMPLE #1
	EXAMPLE #2
	EXAMPLE #3
	SET NOCOUNT
	SET NOCOUNT
	DBCC AND INDEXES
	DBCC SHOW_STATISTICS
	DBCC SHOW_STATISTICS
	DBCC SHOW_STATISTICS
	DBCC SHOW_STATISTICS
	TIP!
	INDEX and TABLE FRAGMENTATION
	INDEX and TABLE FRAGMENTATION
	TIP!
	DBCC SHOWCONTIG
	DBCC SHOWCONTIG
	DBCC SHOWCONTIG
	DBCC INDEXDEFRAG
	DBCC DBREINDEX
	TIP!
	DBCC SQLPERF
	DBCC SQLPERF
	DBCC SQLPERF
	DBCC PROCCACHE
	DBCC PROCCACHE
	DBCC PROCCACHE
	TIP!
	DBCC PINTABLE
	QUEST SOLUTIONS
	CONCLUSION
	QUESTION AND ANSWERS

